The Impact of Land Use Change for Greenhouse Gas Inventories and State-level Climate Mediation Policy:

A GIS methodology applied to Connecticut

Linda Powers Tomasso

ALM Thesis, Sustainability and Environmental Management Program, Harvard University

Linda Powers Tomasso

Project Associate, Health and Places Initiative Center for Health and the Global Environment tomasso@hsph.harvard.edu

Center for Health and the Global Environment

Measured Rise of CO₂: now 397 ppm

Charles David Keeling

Sources and Sinks

Sources and Sinks

Anthropogenic CO₂ sources and sinks in 2005 [PgC/y]

Goddard Institute for Space Studies.NASA.gov

Problem: Inconsistent carbon sink accounting for CT's land use & forestry

Using EPA State Inventory Tool, CT's LUCF sector moved from (-) 4.2 MMTCO₂e in 1990 \rightarrow (+) 4.5 MMTCO₂e by 2006

CT Department of Energy and Environmental Protection, Climate Change, 2010a

My Research Question:

If terrestrial C sequestration were evaluated from a twostep methodology:

Scientific + Financial

Could land conservation and strategic land use planning prove more cost-effective public policy instruments, on a \$ per \$ basis, for states to reduce C emissions?

Thesis Conclusions:

Fact: Ratio of forest loss to C sequestration = **1**: **4.62** due to land conversion from high \longrightarrow low C densities.

Cost: \$ invested in C reduction through land conservation offer a greater yield than many policies currently being pursued by state/regional govts.

Opportunity: Demographic shift of retiring baby boomers south + small forest tracts they own presents a one-time window to preserve natural C sinks.

Connecticut's forest loss (green line) is the steepest in New England

Stein, et al. (2005) Wildlands and Woodlands, Harvard Forest.

CT Forest Loss and Conversion

- CT experienced the steepest rate of forest loss vis-à-vis neighboring states since 1970
- 20% classified as **urban forests**
- 49% < 100 yards of hard devt or agriculture (Butler/2011)
- New London County may lose btw 40-63% to land conversion & devt by 2031 (Stein, 2005)
- Low-density housing (6-25 homes/km²) is fastest growing driver of NE's land change

Connecticut's Land Development is far outpacing Population Growth, 1970-2000

Data Sources:

Blue line: U.S. Bureau of the Census, 2011 Red line: Orfield & Luce, Metropatterns, 2003

"Development outside Hartford, CT." Woodlands & Wildlands, Harvard Forest

Research objectives in proposing a new land use change and forest methodology

- **1.** Assign a C sink value to CT's biomass.
- 2. Determine rates of C sink loss.
- 3. Quantify a long-term ratio of C capture to total GHG emissions.
- Monetize the resulting sink valuation as \$/tonCO₂.
- 5. Specify conditions for replicating this methodology elsewhere.
- 6. Consider environmental and policy applications for my conclusions.

Research Methods and Designs

InVEST

integrated valuation of environmental services and tradeoffs

InVEST Carbon Storage and Sequestration computer model provided simulation software to quantify and track terrestrial C storage

2 sets input data:

- 1. Current Land use/land cover (LUCF) maps sensed by CLEAR
- 2. Carbon pool valuations: above-ground, below-ground biomass, soil, dead organic matter

Research Methods: Input Data

1. 25 years of CLEAR raster data sets capturing land cover change for CT, 1985-2010

	198	35	2010 Change		nge			
-	sq. miles	% of state	sq miles	% of state	sq. miles	% of state		SUP-
Developed	796.6	16.04%	945.5	19.04%	148.9	3.00%		11.3
Turf & Grass	308.7	6.22%	383.6	7.72%	74.8	1.51%		
Other Grasses	65.2	1.31%	95.7	1.93%	30.5	0.61%	AU COMPANY	
Agricultural Field	425.0	8.56%	362.1	7.29%	-62.9	-1.27%		100
Deciduous Forest	2466.0	49.66%	2301.9	46.35%	-164.1	-3.30%	Artification of the second	
Coniferous Forest	455.7	9.18%	439.8	8.86%	-15.9	-0.32%		16
Water	172.5	3.47%	160.8	3.24%	-11.7	-0.24%	1 / #14.1.h /1	6.5
Non-forested								1. A.
Wetland	20.2	0.41%	20.6	0.42%	0.5	0.01%		87
								1.19
Forested Wetland	183.7	3.70%	174.2	3.51%	-9.5	-0.19%	(P) (18 - 18 -	1
Tidal Wetland	22.5	0.45%	22.8	0.46%	0.3	0.01%		14-
Barren	32.1	0.65%	41.8	0.84%	9.7	0.19%	A PORT AND A ST	
Utility (Forest)	17.6	0.35%	17.1	0.34%	-0.5	-0.01%	ALC: NO DECEMBER OF A	14 B
Totals	4966.0	100.00%	4966.0	100.00%	0.0	-5.12%		-
								2.1
Forest Cover ∆					-190.058	-3.83%		

Center for Land Use Education and Research, UConn

Land Cover Change by Vegetation Category 1985 v 2010

-	-	_	_	_	Klometers
0	15	30	60	90	120

Developed, Turf Grass & Barren Land Forests Coniferous Forests Cropland & Grassiand Wetlands

2. Carbon stock values in MgC/ha²

LUCF	LUCF_name	C_above	C_Below	C_Soil	C_dead
1	Developed	0.20	0.59	33.00	0.00
2	Turf & Grass	0.90	9.11	110.00	0.00
3	Other Grasses	0.33	0.89	80.52	0.20
4	Agricultural Field	5.20	0.89	60.00	1.70
5	Deciduous Forest*	109.80	50.50	78.50	31.40
6	Coniferous Forest*	95.40	43.90	52.60	31.10
7	Water	0.00	0.00	0.00	0.00
8	Non-forested Wetland	35.24	9.18	99.91	0.00
9	Forested Wetland	49.28	12.83	99.91	20.05
10	Tidal Wetland	1.30	1.30	240.00	0.70
11	Barren	0.00	0.33	0.33	0.00
12	Utility (Forest)	71.80	47.20	65.50	21.90

Foundation of thesis research was to assign values derived from 80-100 published scientific articles.

Annual carbon uptake for the most abundant CT forest species

Data Source: Forests of Southern New England (Butler et al., 2011)

Sample input window from InVEST Carbon Sequestration Model

Carbon Storage and Seque	stration	
	InVEST Version 2.4.5 Model documen	tation Report an issue
Calculate sequestration		
Wedness alo		
VVorkspace C:\Carb	ion (input)lest_Output	
Current land use/land cover		
Raster location	C:/Carbon/Input/ct2_2006_m/dblbnd.adf	
Year of land cover	2006	0
Euture land use land cover		
Raster location	C:/Carbon/Input/ct2_2010_m/dblbnd.adf	
tear of land cover	2010	U
Carbon pools	C:/Carbon/Input/Export_Output_2.dbf	
 Current harvest rate 	map	•
🚽 🛛 Future harvest rate	map	 Image: Image: Ima
Parameters have been loade	ed from the most recent run of this model. <u>Reset to defaults</u>	
Areset		Run 🛛 🎇 Quit

Methods: Output from InVEST *Carbon Storage & Sequestration* model

	Arguments:
Þ	carbon_pools_uri C:/Carbon/Input/Export_Output_2.dbf
	lulc_cur_uri C:/Carbon/Input/ct2_2006_m/dblbnd.adf
	lulc_cur_year 2006
	lulc_fut_uri C:/Carbon/Input/ct2_2010_m/dblbnd.adf
	lulc_fut_year 2010
	workspace_dir C:\Carbon\Input\Test_Output
	04/02/2013 11:03:31 root INFO Logging will be saved to carbon_biophysical-log-2013-04-0211_03_31.txt
	04/02/2013 11:03:31 root DEBUG Loaded the model from invest_natcap.carbon.carbon_biophysical
	04/02/2013 11:03:31 root INFO Executing the loaded model
	04/02/2013 11:03:31 root INFO Running InVEST version 2.4.5
	04/02/2013 11:03:31 root INFO Disk space remaining for workspace: 364.03 GB
	04/02/2013 11:03:31 carbon_biophysical DEBUG loading C:/Carbon/Input/ct2_2006_m/dblbnd.adf
	04/02/2013 11:03:31 carbon_biophysical DEBUG loading C:/Carbon/Input/ct2_2010_m/dblbnd.adf
	04/02/2013 11:03:31 carbon_biophysical DEBUG loading C:/Carbon/Input/Export_Output_2.dbf
	04/02/2013 11:03:31 carbon_biophysical DEBUG creating output raster C:\Carbon\Input\Test_Output\Output\tot_C_cur.tif
	04/02/2013 11:03:32 carbon_biophysical DEBUG creating output raster C:\Carbon\Input\Test_Output\Output\sequest.tif
	04/02/2013 11:03:32 carbon_biophysical DEBUG creating output raster C:\Carbon\Input\Test_Output\Output\tot_C_fut.tif
	04/02/2013 11:03:32 carbon_biophysical INFO starting carbon biophysical model
	04/02/2013 11:03:32 carbon_core DEBUG building carbon pools
	04/02/2013 11:03:32 carbon_core DEBUG built carbon pools
	04/02/2013 11:03:32 carbon_core INFO calculating carbon storage for the current landscape
	04/02/2013 11:03:38 carbon_core INFO finished calculating carbon storage for the current landscape
	04/02/2013 11:03:38 carbon_core INFO calculating raster stats for tot_C_cur
	04/02/2013 11:03:38 carbon_core INFO calculating carbon storage for future landscape
	04/02/2013 11:03:44 carbon_core INFO finished calculating carbon storage for future landscape
	04/02/2013 11:03:44 carbon_core INFO calculating raster stats for tot_C_fut
	04/02/2013 11:03:45 carbon_core INFO calculating carbon sequestration
	04/02/2013 11:03:53 carbon_core INFO calculating raster stats for sequest
	04/02/2013 11:03:53 carbon_core INFO finished calculating carbon sequestration
	04/02/2013 11:03:53 carbon_biophysical INFO finished carbon biophysical model
	04/02/2013 11:03:53 carbon_core DEBUG calculate summary
	04/02/2013 11:03:54 carbon_core INFO Total current carbon: 275251250.233 Mg
	04/02/2013 11:03:55 carbon_core INFO Total scenario carbon: 274916743.698 Mg
	04/02/2013 11:03:57 carbon_core INFO Total sequestered carbon: -334506.873549 Mg
	04/02/2013 11:03:57 root INFO Opening file explorer to workspace directory
	04/02/2013 11:03:57 root INFO Using windows explorer to view files
	04/02/2013 11:03:57 root INFO Disk space free: 364.03 GB
	04/02/2013 11:03:57 root INFO Finished.

Natural Capital Project, Stanford University

Results: loss of sequestered C from land conversion, 1985-2010; no biomass growth

Sensitivity analyses model variations from baseline values of C-above sequestration due to biomass growth

Modeling of sequestration levels using mean biomass growth rates of 2.5 MgC ha⁻¹y⁻¹ for deciduous & 3.0 MgC ha⁻¹y⁻¹ for coniferous forests (Thompson 2011).

Variations from baseline values for C stocks of Southern New England deciduous and coniferous forests

Sensitivity Analyses run on Sequestration Modeling by Connecticut's forests

Year

- a. +/- 10% of baseline value of Carbon Stocks (tree biomass).
- b. +/10% and +/- 40% of baseline value for annual biomass growth, deciduous forests,
 c. coniferous forests, and d. combined deciduous and coniferous forests .

Results: Sequestration output from sensitivity analyses, with biogrowth

Sequestration level output from sensitivity analyses graphed above

			Se	questered MMC	CO2/ha/yr		
	Scenario	1985	1990	1995	2002	2006	2010
	D&C stock baseline	866.11	912.50	963.76	1,034.20	1,071.03	1,116.37
	10%- decid C stock	828.64	846.16	893.04	958.53	992.61	1,034.38
	10%+ decid C stock	929.35	979.35	1008.26	1,109.68	1,149.02	1,197.91
	10%- conif C stock	856.50	902.29	952.06	1,021.09	1,057.13	1,090.51
	10%+ conif C stock	878.23	902.29	975.45	1,044.94	1,084.90	1,131.03
	10%- D&C C stock	793.03	835.46	881.35	945.39	978.71	1,019.05
>	10%+ D&C C stock	939.00	990.01	1045.72	1,120.45	1,162.88	1,211.99
	D biomass growth baseline	866.20	912.50	963.76	1,034.20	1,071.03	1,116.37
	10%- D biomass growth	866.20	908.20	955.62	1,006.45	1,054.17	1,095.88
	10%+ D biomass growth	866.20	967.94	972.12	1,047.96	1,087.90	1,136.26
	40%- D biomass growth	866.20	947.11	930.77	979.15	1,003.79	1,035.98
	40%+ D biomass growth	866.20	980.53	996.74	1,089.29	1,138.06	1,195.58
	Conif biomass growth baseline	866.20	912.50	963.76	1,034.20	1,071.03	1,116.37
	10%- C biomass growth	866.20	912.04	961.87	1,031.10	1,067.18	1,111.77
	10%+ C biomass growth	866.20	913.46	965.63	1,037.40	1,076.14	1,120.92
	40%- C biomass growth	866.20	909.21	956.29	1,021.64	1,055.62	1,098.07
	40%+ C biomass growth	866.20	966.69	971.23	1,046.80	1,086.45	1,134.66
	10%- D&C growth	866.20	907.92	953.74	1,017.30	1,050.31	1,091.87
	10%+ D&C growth	866.20	918.05	973.99	1,051.13	1,091.75	1,140.81
	40%- D&C growth	866.20	892.49	923.30	966.59	988.37	1,017.68
>	40%+ D&C growth	866.20	989.51	1004.21	1,101.85	1,153.48	1,214.46

2nd highest

highest

Differentials in levels of sequestered C generated by sensitivity analyses

					foregone C	C seq	
in MMTCO2	C sequestered	foregone seq	Seq Difference	C seq	gain	difference	25 yr % C loss
baseline	1,116.37	1,170.10	-53.74	250.16	303.90	-53.74	17.68%
A10% D	1,095.88	1,148.18	-52.30	229.68	281.98	-52.30	18.55%
B_+10% D	1,136.26	1,190.81	-54.55	270.06	324.61	-54.55	16.81%
C40% D	1,035.98	1,084.01	-48.03	169.78	217.80	-48.03	22.05%
D_+40% D	1,195.58	1,254.99	-59.41	329.37	388.79	-59.41	15.28%
E10% C	1,111.77	1,164.73	-52.97	245.56	298.53	-52.97	17.74%
F_+10% C	1,120.92	1,174.22	-53.30	254.72	308.01	-53.30	17.30%
G40% C	1,098.07	1,150.54	-52.47	231.86	284.33	-52.47	18.45%
H_+40% C	1,134.66	1,188.46	-53.80	268.46	322.26	-53.80	16.69%
I_both -10	1,091.87	1,143.42	-51.55	225.67	277.21	-51.55	18.59%
J_both +10	1,140.81	1,195.53	-54.72	274.61	329.33	-54.72	16.61%
K_both -40	1,017.68	1,065.05	-47.36	151.48	198.84	-47.36	23.82%
L_both +40	1,214.46	1,273.95	-59.49	348.26	407.75	-59.49	14.59%
M10% D stock	1,034.38	1,081.67	-47.28	231.27	278.55	-47.28	16.97%
N_+10% D stock	1,197.91	1,256.86	-58.95	268.13	327.09	-58.95	18.02%
O10% C stock	1,090.51	1,142.70	-52.20	186.49	238.68	-52.20	21.87%
P_+10% C stock	1,131.03	1,184.69	-53.66	255.33	309.00	-53.66	17.37%
Q10% D&C stock	1,019.05	1,066.38	-47.34	178.59	225.93	-47.34	20.95%
R_+10% D&C_stock	1,211.99	1,272.06	-60.07	225.55	285.62	-60.07	21.03%

If 250 MMTCO₂ was sequestered with forest loss, how much would have been captured without ?

Foregone C sequestration in CT owing to land use change, 1985-2010

	in MMTCO2	Foreg	gone C sequestratio	on, Deciduous Fore	ests	Foregone C sequestration, Conifers					
Note: C seq denominated in CO2 equivalents	baseline_C values	A10% D	B_+10% D	C40% D	D_+40% D	E10% C	F_+10% C	G40% C	H_+40% C		
Foregone C seq											
1985	866.20	866.20	866.20	866.20	866.20	866.20	866.20	866.20	866.20		
2010	1,170.10	1,148.18	1,190.81	1,084.01	1,254.99	1,164.73	1,174.22	1,150.54	1,188.46		
Foregone seq for 25 yr	303.90	281.98	324.61	217.80	388.79	298.53	308.01	284.33	322.26		
Variation from baseline											
(in MMTCO2)	0	-21.92	20.71	-86.10	84.89	-5.37	4.11	-19.57	18.36		
2010 seq	1,116.37	1,095.88	1,136.26	1,035.98	1,195.58	1,111.77	1,120.92	1,098.07	1,134.66		
2010 foregone seq	53.74	52.30	54.55	48.03	59.41	52.97	53.30	52.47	53.80		
2010 foregone seq as % of 25-yr foregone seq	17.68%	18.55%	16.81%	22.05%	15.28%	17.74%	17.30%	18.45%	16.69%		

Method to calculate foregone C sequestration as a % of realized 25-year sequestered C, including forest biomass growth:

25 yr Foregone Sequestration – 25 yr C Sequestration Gain

25 yr Foregone Sequestration

All Values cover 1985 – 2010

Foregone C sequestration in CT owing to land use change, 1985-2010

	in MMTCO2	Foreg	gone C sequestratio	on, Deciduous Fore	ests	Foregone C sequestration, Conifers					
Note: C seq denominated in CO2 equivalents	baseline_C values	A10% D	B_+10% D	C40% D	D_+40% D	E10% C	F_+10% C	G40% C	H_+40% C		
Foregone C seq											
1985	866.20	866.20	866.20	866.20	866.20	866.20	866.20	866.20	866.20		
2010	1,170.10	1,148.18	1,190.81	1,084.01	1,254.99	1,164.73	1,174.22	1,150.54	1,188.46		
Foregone seq for 25 yr	303.90	281.98	324.61	217.80	388.79	298.53	308.01	284.33	322.26		
Variation from baseline											
(in MMTCO2)	0	-21.92	20.71	-86.10	84.89	-5.37	4.11	-19.57	18.36		
2010 seq	1,116.37	1,095.88	1,136.26	1,035.98	1,195.58	1,111.77	1,120.92	1,098.07	1,134.66		
2010 foregone seq	53.74	52.30	54.55	48.03	59.41	52.97	53.30	52.47	53.80		
2010 foregone seq as % of 25-yr foregone seq	17.68%	18.55%	16.81%	22.05%	15.28%	17.74%	17.30%	18.45%	16.69%		

Results: Difference in rate of forest loss vs C capture by same land coverage

	1985		19	90	1995		2002		2006		2010		Cha	ange	
	sq. miles	% of sta	ite sq. miles	% of state	sq. miles	% of state	sq. miles	% of state	sq. miles	% of state	sq miles	% of state	sq. miles	% of s	state
Forest Cover ∆	3123.08		3056.9	0.0	3020.2	0.01	2973.3	0.94%	2938.10	0.0	2933	0.10%	-190.1		3.83%
Forest Coverage	2	62.8	9%	61.56%		60.82%		59.87%		59.16%		59.06%			1
	-	ac	tual C seq	lost C sce	nario	C seq Differ	ence	actual lo	ost scenario)	25	i yr Percent	tage lost		
	baseline		1,116.3	7 1,170.1	10	-53.74		250.16	303.90	-53.74		17.68%	←		
	A -10% D		1,095.88 1,148.1		8 -52.30			229.68	281.98	-52.30		18.55%			

Modeling of LUCF shows that 3.83% loss of forests => 17.68% sequestration loss, 1985-2010

Results: Baseline C sequestration loss is 4.62 times > baseline forest conversion

Results: CT's annual CO₂ emissions exceed foregone C sequestration due to LUCF

CT forest loss + 25 years biomass growth \rightarrow Foregone C sequestration > annual CO₂

Questions at this point?

Question everything

Research applied to open parcels in Farmington, CT

Source: Esri 10.1 ArcGIS

ArcGIS land cover maps of open space parcels

Results: Price differentials in \$/tCO₂ are a function of C densities

Farm		acres	ha	Total MgC	MgC/ha sequestered	MgC>MgCO2 sequestered	MgCO2 > MtCO2	\$/acre	\$/ha	\$/MgC	\$/MTonsC	\$/MTCO2	\$/MMTCO2
Burnt Hill													
	1985	64.9	26.264	6,625.02	252.25	924.23	924.23	25,000.00	61,776.35	244.90	244.90	66.84	66,840,652
	2010	64.9	26.264	8,903.19	338.99	1,242.05	1,242.05	25,000.00	61,776.35	182.24	182.24	49.74	49,737,286
Hein													
	1985	53.5	21.651	2,668.99	123.27	451.67	451.67	25,000.00	61,776.35	501.13	501.13	136.77	136,772,110
	2010	53.5	21.651	3,521.73	162.66	595.98	595.98	25,000.00	61,776.35	379.79	379.79	103.65	103,654,695
Krell													
	1985	90	36.422	6,890.12	189.17	693.14	693.14	25,000.00	61,776.35	326.56	326.56	89.13	89,125,898
	2010	90	36.422	9,642.90	264.75	970.06	970.06	25,000.00	61,776.35	233.33	233.33	63.68	63,682,880
Saddleridge													
Ū	1985	103.5	41.885	10,743.50	256.50	939.82	939.82	25,000.00	61,776.35	240.84	240.84	65.73	65,732,428
	2010	103.5	41.885	15,004.19	358.22	1,312.53	1,312.53	25,000.00	61,776.35	172.45	172.45	47.07	47,066,579
												\land /	

1 acre = 0.404685642 ha

1 ha = 2.471054 acre

Comparison of CO₂ abatement strategies shows forest preservation as cost-competitive

- Transit modification strategies
 - Reason Foundation
 - Moore, Staley & Poole
 - Victoria Policy Institute
- Bus rapid transit systems
 - Los Angeles
 - Vancouver (Millard-Ball)
- Major road improvements
 - (Reason Foundation)
- Concentrated solar in select sun-rich locations (CT State DEEP)
- Current nuclear competitive with coal/NG (MIT)
- RGGI auction 25 clearing price
- Forest preservation

- \$4,257/tCO₂
- \$ 833/tCO₂
- \$1,000/tCO₂
- \$ 117/tCO₂
- \$ 3,238/tCO₂
- \$ 3,995/tCO₂
- \$ 52/tCO₂
- \$ 27/tCO₂
- \$ 4.88/tCO₂
- \$ 47-137/tCO₂

Policy implications for CT forestlands

- Public Act 490 provides tax incentives for CT's forest landholders only with ≥ 25-acres.
- On half of CT's total privately-owned forests, 70% of owners are age 50+, spelling large generational change in long-term land ownership.
- 3/4 of Southern New England's forestlands are large stands of 80-100 yr-old tree specimens.

Policy recommendations of research

- Broaden criteria for public land acquisition: environmental aims \rightarrow climate reduction goals.
- Expand RGGI's offset allowances to include forest preservation; raise cap on compliance obligations (CT 3% v CA's 8%) thru sale of offset permits
- Fiscal policies need to engage private landholders & land preservation NGOs toward climate goals.
- Compact re/development & revised zoning before current wave of deforestation becomes permanent.

Conclusions for CT's climate policy

- Estimates of C sequestration from now-developed forests would have yielded 53.74 MMTCO₂ additional sequestration, 1985-2010, an amount exceeding *total annual fossil fuel emissions in CT*.
- Preservation of forest C stocks over time becomes the determinant factor for influencing biomass C sequestration levels.
- Results indicate avoided deforestation through land preservation, compact development/ redevelopment can reduce C levels more cost effectively than many current emissions reduction strategies.

Forthcoming Article:

Journal of Environmental Protection, special issue: Land Use and Sustainability

Journal of Environmental Protection

lournal of Environmental Protection, 2014, *, **
Published Online **** 2014 in Sciltes. http://www.scirp.org/journal/jep
http://dx.doi.org/10.4235/jep.2014.*****

The Impact of Land Use Change for Greenhouse Gas Inventories and State-level Climate Mediation Policy: A GIS Methodology Applied to Connecticut

Linda Powers Tomasso and Mark Leighton

Sustainability and Environmental Management Program, Harvard University, Cambridge, MA, USA Email: tomasso@hsph.hervard.edu

Received 29 August 2014

Copyright © 2014 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Col. O Licenses/commons.org/licenses/by/4.0/

Abstract

Greenhouse gas (GHG) inventories conducted at state and regional levels serve to quantify long-term emissions trends and set benchmarks against which to evaluate the effectiveness of state government-mandated emissions reductions. GHG inventories which incompletely account for land use, land change, and forestry (LUCF) due to insufficient measurement tools discount the value of terrestrial carbon (C) sinks. In consequence, sink preservation is often omitted from regional land use planning. This paper proposes an accounting methodology which estimates foregone C sequestration derived LUCF change in the southern New England state of Connecticut (CT). The Natural Capital Project's InVEST program provided a template for modeling C storage and sequestration for CT's land class categories. LandSat mapping of long-term land cover patterns in CT conducted by CLEAR at the University of CT served as input data for InVEST computer modeling of C sequestration, both realized and foregone due to LUCF. The results showed that: 1) Land converted from high C density forestland to low density C land cover classes reduced the rate of C sequestration loss at 4.62 times the rate of forest reduction. Forest loss of 3.83% over twenty-five years was responsible for foregone C sequestration equivalent to 17.68% of total 2010 sequestration. 2) Accumulating C stocks pushed total annual sequestration from a 1985 baseline level of 866 MMTCO2 to 1,116 MMTCO2 by 2010 -a 250 MMTCO2 increment. 3) C sequestration from forest loss since 1985 would have yielded additional sequestration of 53.74 MMTCO2 by 2010. By 2002, foregone yield surpassed CT's annual fossil fuel emissions, currently at 40 MMTCO2. 4) Preservation of forest C stocks over time becomes the determining factor for influencing biomass C sequestration levels. Deciduous forests have a preponderant influence on CO2 budgets. The ground-up methodology to quantify land-based C sequestration presented

Thank you to:

- CLEAR: Chet Arnold, Emily Wilson, and David Dickson
- DEEP: Tracy Babbidge, Pete Brunelli, Lynn Stoddard and Jess LeClair
- Woods Institute for the Environment, Stanford Univ.
- Liz Dolphin, Farmington, CT Town Planning Office
- Dr. Mark Leighton, Harvard University
- Center for Geospatial Analysis, Harvard
- Harvard Forest

Follow-up research on CT land conversion from forest to development

Avon: 1985 v 2010 Residential: Hunters Run Cromwell: 1985 v 2010 Transportation: Rt 9 connector

Foregone C sequestration = $0.16 \text{ MMTCO}_2 \text{ left}$; $0.16 \text{ MMTCO}_2 \text{ right}$.

Follow-up research on CT land conversion from forest to development

Montville 1985 Pre-casino development

Montville 2010 Post-Mohegan Sun

Foregone C sequestration = $0.357 \text{ MMTCO}_2 / 0.92\%$ of CT's annual emissions

Follow-up research on CT land conversion from forest to development

Manchester 1985, I-84 Pre-commercial development

Manchester 2010 Post-Buckland Hills Mall

Should future development projects require a GHG assessment as part of Environmental Impact Assessments?